NHCT 宇宙天気ユーザーズフォーラム 2015年7月17日(金)

太陽嵐の予測について

草野 完也

名古屋大学太陽地球環境研究所

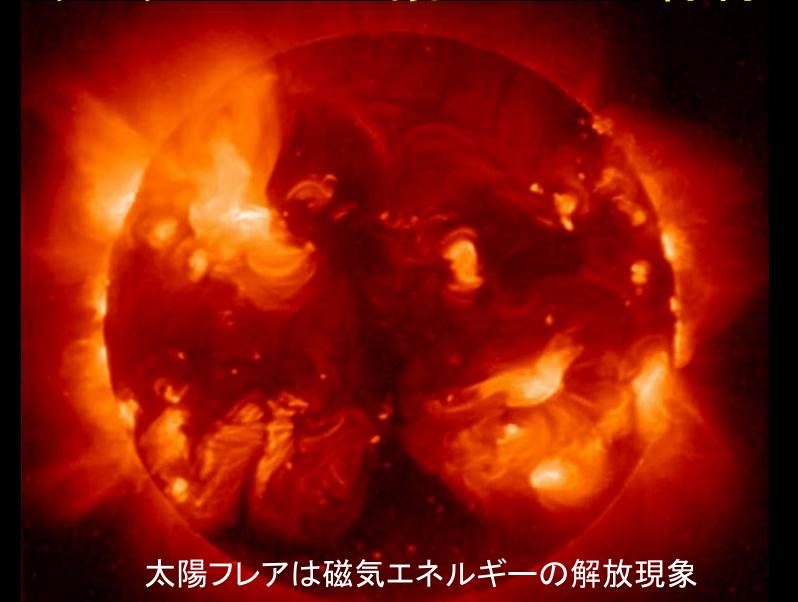
太陽嵐とその予測

太陽地球圏環境変動の社会影響

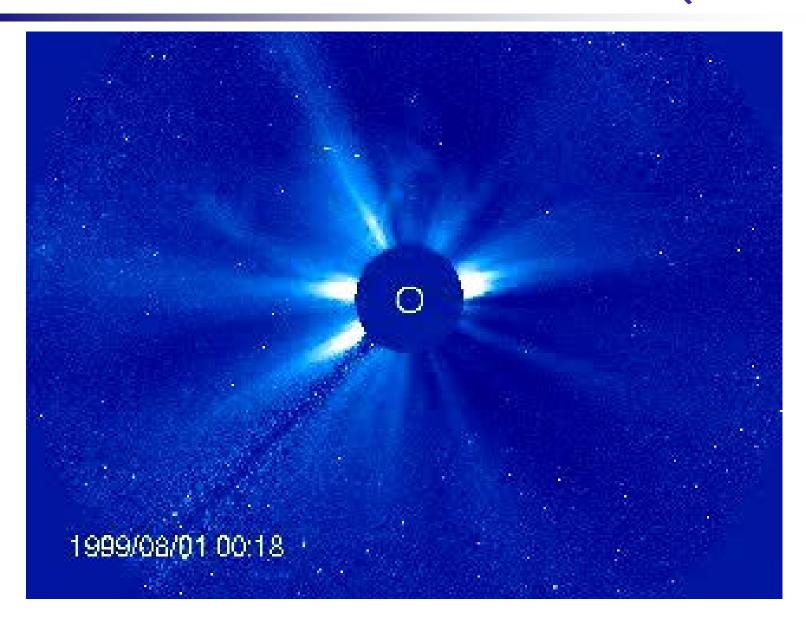
宇宙放射線による宇宙飛行士・航空機乗員の被曝

電離圏擾乱による測位・通信障害

地磁気誘導電流による 電力網障害と停電



衛星障害•軌道影響


太陽活動の大極小期(グランド・ ミニマム)における小氷期の発生

ようこうによる太陽コロナX線像

フレアに伴って発生するプラズマ放出現象

太陽風とコロナ質量放出(CME)

太陽嵐とその予測

何を予測するか

- 1. 爆発の発生予測
- 2. 地球軌道上におけるその影響の予測 (惑星間空間の伝搬の予測)

太陽

太陽放射(VIS, UV, EUV, X)

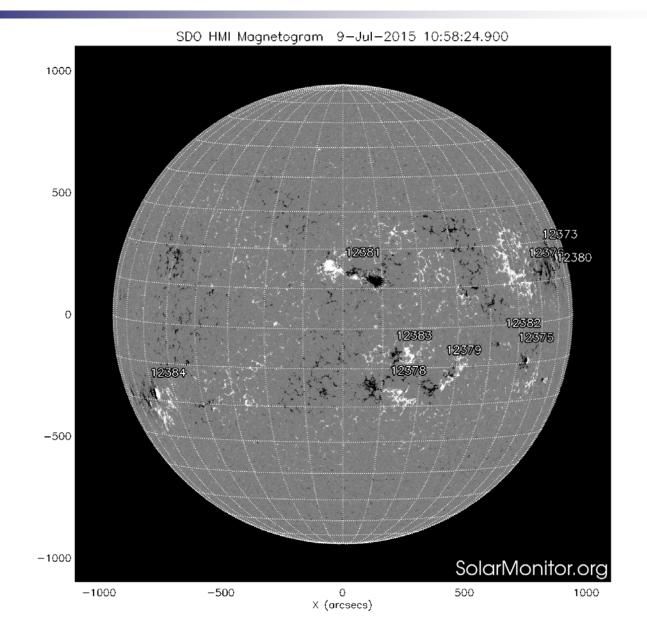
高エネルギー粒子

太陽風(高温プラズマの高速流)

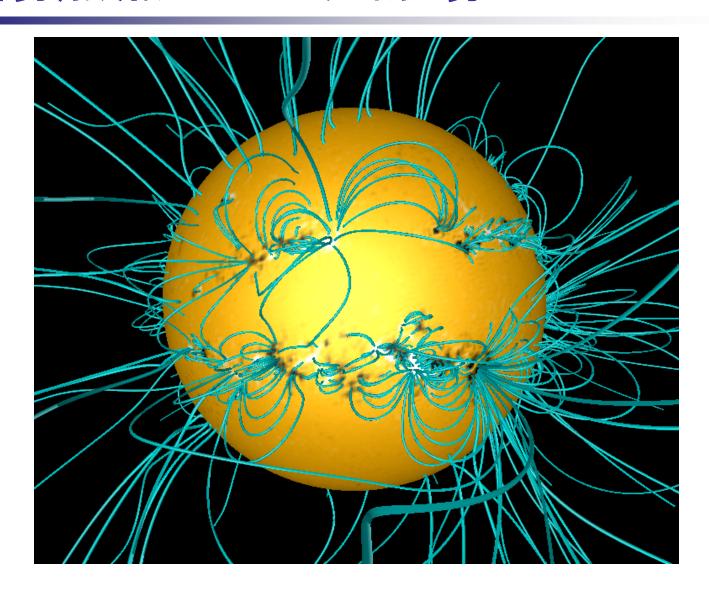
電離圏嵐

宇宙放射線

磁気嵐

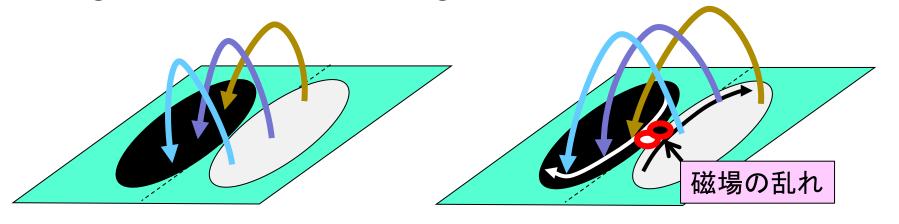

時間

規模

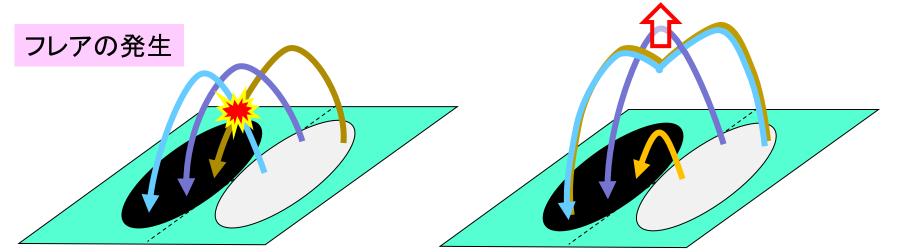

(発生と終息)

(エネルギー、速度、質量、

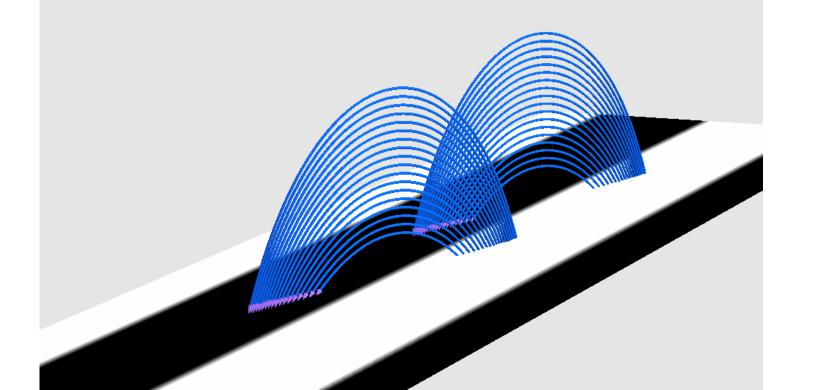
7月9日の太陽


太陽黒点とコロナ磁場

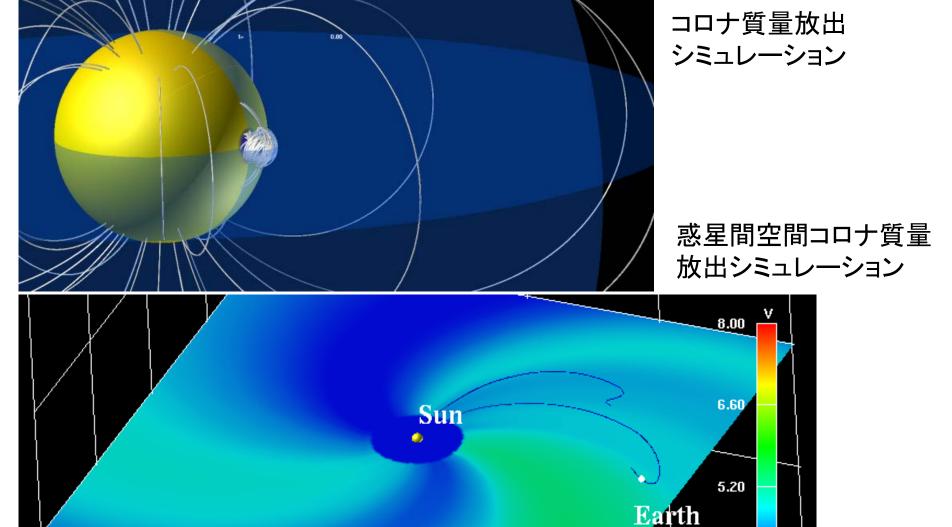
太陽フレアの発生メカニズム

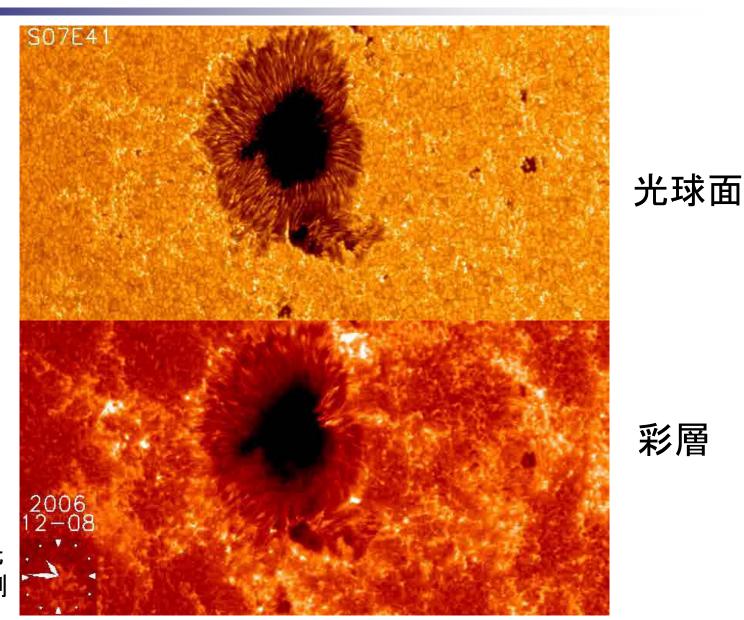

①黒点(活動領域)の形成

②磁力線の捻じれ(黒点の回転等による)

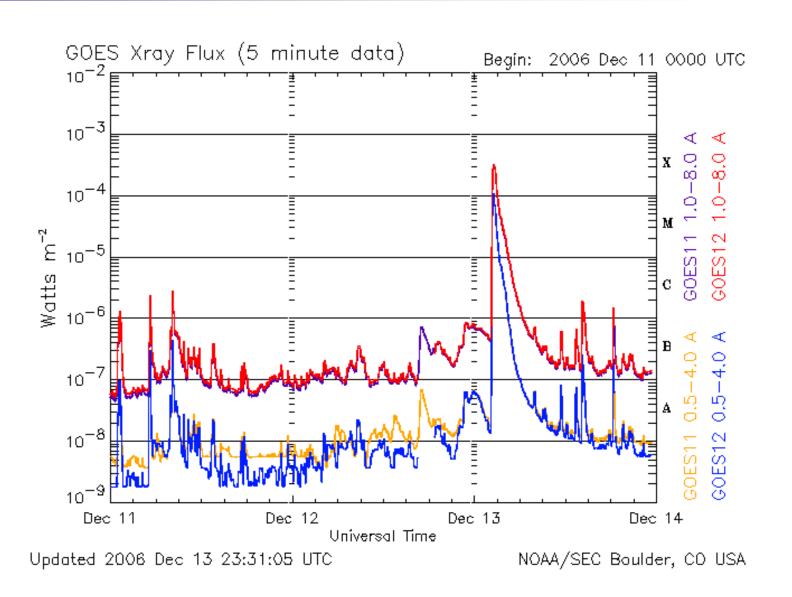


③磁力線のつなぎ替え(リコネクション)


4プラズマと磁場の噴出


太陽フレアのシミュレーション

コロナ質量放出のシミュレーション



2006年12月13日の太陽フレア爆発

ひので可視光 望遠鏡の観測

太陽フレアのX線流束変化

激甚宇宙天気災害の可能性

■ 超キャリントン・クラス

- 樹木年輪中の炭素同位体解析 西暦774~775年及び、西暦992~993年にキャリントン・イベントの10倍程度の放射線急増事象が発生したことを発見 (名大: Miyake et al. 2012 *Nature*, Miyake et al. 2013 *Nature Comm.*)
- 太陽型恒星の超巨大フレアの可能性(京大: Maehara et al. 2012 Nature)

■ キャリントン・クラス

記録された最大の磁気嵐

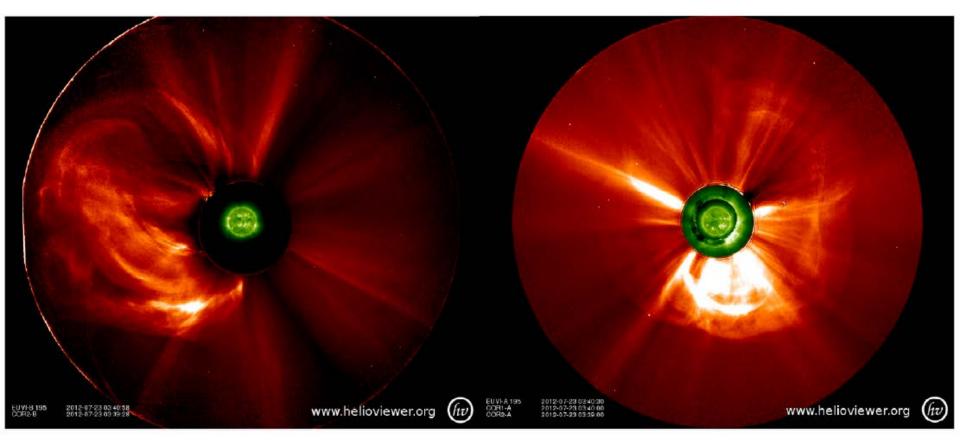
- 1859年9月 Dst~-1760nT (キャリントン・イベント)
 現代において発生すれば、衛星障害、通信・測位障害など全地球的な 激甚宇宙天気災害を引き起こす。(米国NRC:被害総額~2兆ドルと試算)
- 2012年7月 推定Dst~-1182nT (地球に到達した場合の推定) 太陽の裏面で発生したため地球には到達しなかったが、もし2週間前に発生した場合、地球に到達し、大規模被害をもたらしたと考えられる。 (Baker et al. 2013)

■ サブ・キャリントン・クラス

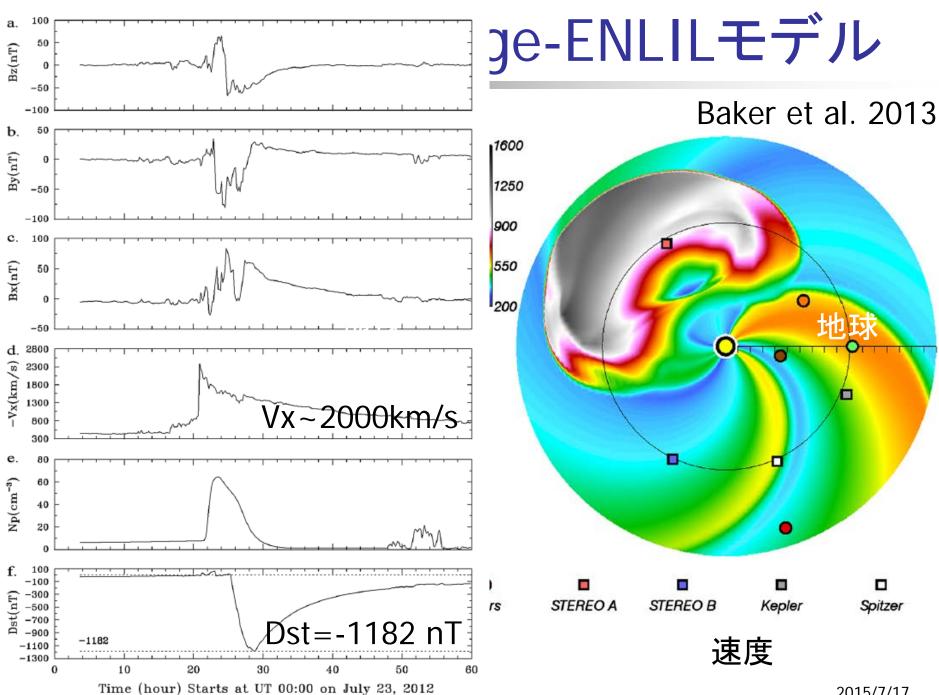
- 1989年3月 Dst=-589nT ケベック州大停電
- 2000年7月 Dst=-301nT X線観測衛星「あすか」制御不良
- 2003年10月 Dst= -422nT スウェーデン、南アフリカで送電システム障害、火星探査機Mars Odyssey障害

Dst: 地球磁気圏に流れる 軸対称な環電流の強さを 表す地磁気活動度指数

-1000

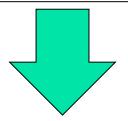

(nT)

Dst

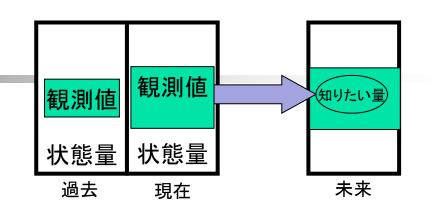

-**20**00

超高速CME(2012年7月23日)

 Baker et al. 2013 Defining Extreme Space Weather Scenarios



STEREO-B STEREO-A



予測の方法

- 経験モデルによる予測
 - 周期性と相関性の発見
 - 古代天文学
 - 前兆現象の発見
 - 経験数値モデル
 - 機械学習アルゴリズム

- 物理モデルによる予測
 - 物理法則に基づく 第1原理計算
 - ▶ 天体力学

- 物理経験モデルによる予測 (GCMによる気象気候モデル)
 - 物理法則 +パラメタリゼーション :チューニング(最適化)
 - 物理モデル+同化手法
 - アンサンブル予測

黒点形態分類によるフレア確率

McIntosh classification

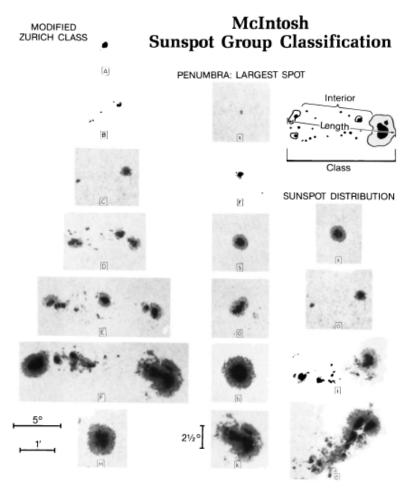
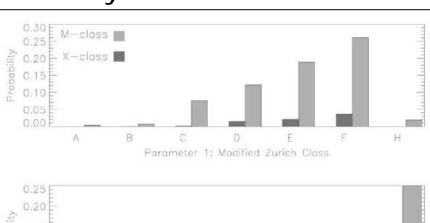
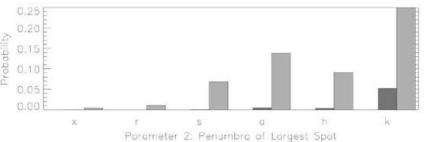




Fig. 1. The 3-component McIntosh classification, with examples of each category.

McIntosh 1990

Gallagher, Moon, Wang 2002 Sol. Phys.

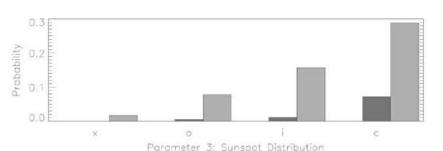
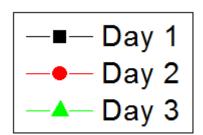


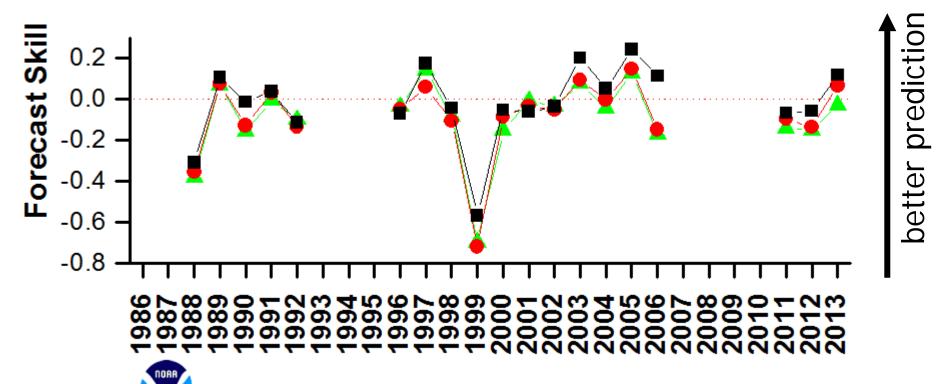
Figure 4. Derived 24-hour active-region flare probabilities for each of the three McIntosh classification parameters using Poisson statistics.

米国NOAAのフレア予測結果

 Crown 2012 "Validation of NOAA/SWPC Flare Probabilities for Cycle 23"

Contingency Table for X-class Flares Prediction with the lead time of one-day

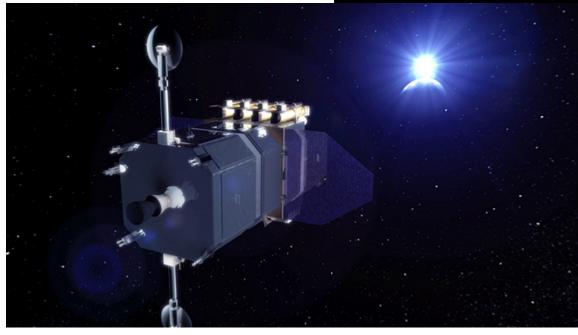

Forecast	Observation positive	Observation negative	hit rate
Yes	50 (a)	67 (b)	a/(a+b) ~0.43
No	52 (c)	31315 (d)	


Skill Score =
$$(a-b)/(a+c) \sim -0.17$$

True Skill Score (TSS)
=
$$a/(a+b) - c/(c+d) \sim 0.43$$

フレア予測結果の推移

http://www.swpc.noaa.gov/forecast_verification/Assets/XFla res/xStackPlot2.html



2014, NOAA Space Weather Prediction Center, Boulder, CO, USA

新たな予測への取り組み

ひので衛星 (日本)

SDO衛星 (米国)

ベクトル磁場データの利用

- Bobra and Couvidat 2014
- SDO衛星の活動領域ベクトル磁場データセット(SHARP)より様々な磁場パラメータを求め、機械学習アルゴリズム Support Vector Machine (SVM)を用いてM及びXクラスフレアの予測性能を評価

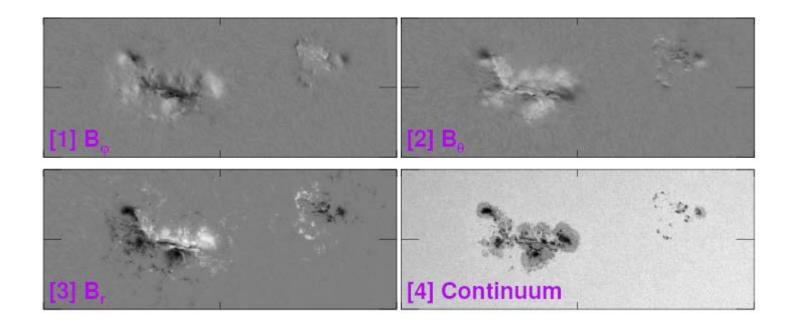


Table 1. SHARP active region parameter formulae.

Keyword	Description	Formula	F-Score	Selection
TOTUSJH	Total unsigned current helicity	$H_{c_{total}} \propto \sum B_z \cdot J_z $	3560	Included
TOTBSQ	Total magnitude of Lorentz force	$F \propto \sum B^2$	3051	Included
тотрот	Total photospheric magnetic free energy density	$\rho_{tot} \propto \sum (\vec{B}^{Obs} - \vec{B}^{Pot})^2 dA$	2996	Included
TOTUSJZ	Total unsigned vertical current	$J_{z_{total}} = \sum J_z dA$	2733	Included
ABSNJZH	Absolute value of the net current helicity	$H_{c_{abs}} \propto \sum B_z \cdot J_z $	2618	Included
SAVNCPP	Sum of the modulus of the net current per polarity	$J_{z_{sum}} \propto \left \sum_{z}^{B_z^+} J_z dA \right + \left \sum_{z}^{B_z^-} J_z dA \right $	2448	Included
USFLUX	Total unsigned flux	$\Phi = \sum B_z dA$	2437	Included
AREA_ACR	Area of strong field pixels in the active region	Area = \sum Pixels	2047	Included
TOTFZ	Sum of z-component of Lorentz force	$F_z \propto \sum (B_x^2 + B_y^2 - B_z^2) dA$	1371	Included
MEANPOT	Mean photospheric magnetic free energy	$ar ho \propto rac{1}{N} \sum \left({ec B}^{ m Obs} - {ec B}^{ m Pot} ight)^2$	1064	Included
R_VALUE	Sum of flux near polarity inversion line	$\Phi = \sum B_{LoS} dA$ within R mask	1057	Included
EPSZ	Sum of z-component of normalized Lorentz force	$\delta F_z \propto \frac{\sum (B_x^2 + B_y^2 - B_z^2)}{\sum B^2}$	864.1	Included
SHRGT45	Fraction of Area with Shear $>45^{\circ}$	Area with Shear $> 45^{\circ}$ / Total Area	740.8	Included
MEANSHR	Mean shear angle	$\overline{\Gamma} = \frac{1}{N} \sum \arccos \left(\frac{\overline{B}^{\mathrm{Obs}} \cdot \overline{B}^{\mathrm{Pot}}}{ B^{\mathrm{Obs}} B^{\mathrm{Pot}} } \right)$	727.9	Discarde
MEANGAM	Mean angle of field from radial	$ \overline{\gamma} = \frac{1}{N} \sum \arctan\left(\frac{B_h}{B_z}\right) $	573.3	Discarde
MEANGBT	Mean gradient of total field	$ \nabla B_{ m tot} = rac{1}{N} \sum \sqrt{\left(rac{\partial B}{\partial x} ight)^2 + \left(rac{\partial B}{\partial y} ight)^2}$	192.3	Discarde
MEANGBZ	Mean gradient of vertical field	$ \nabla B_z = \frac{1}{N} \sum \sqrt{\left(\frac{\partial B_z}{\partial x}\right)^2 + \left(\frac{\partial B_z}{\partial y}\right)^2}$	88.40	Discarde
MEANGBH	Mean gradient of horizontal field	$ \overline{\nabla B_h} = \frac{1}{N} \sum \sqrt{\left(\frac{\partial B_h}{\partial x}\right)^2 + \left(\frac{\partial B_h}{\partial y}\right)^2}$	79.40	Discarde
MEANJZH	Mean current helicity (B_z contribution)	$\overline{H_c} \propto \frac{1}{N} \sum B_z \cdot J_z$	46.73	Discarde
TOTFY	Sum of y-component of Lorentz force	$F_y \propto \sum B_y B_z dA$	28.92	Discarde
MEANJZD	Mean vertical current density	$\overline{J_z} \propto \frac{1}{N} \sum \left(\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} \right)$	17.44	Discarde
MEANALP	Mean characteristic twist parameter, α	$\alpha_{total} \propto \frac{\sum J_z \cdot B_z}{\sum B_z^2}$	10.41	Discarde
TOTFX	Sum of x-component of Lorentz force	$F_x \propto -\sum B_x B_z dA$	6.147	Discarde
EPSY	Sum of y-component of normalized Lorentz force	$\delta F_y \propto \frac{-\sum B_y B_z}{\sum B^2}$	0.647	Discarde
EPSX	Sum of x-component of normalized Lorentz force	$\delta F_x \propto \frac{\sum B_x B_z}{\sum B^2}$	0.366	Discarde

Metric	Segmented	Operational
Time interval (no flare)	48h	24h
class-imbalance ratio	16.5	16.5
Accuracy	$0.943 {\pm} 0.006$	$0.924{\pm}0.007$
Precision (positive)	0.501 ± 0.041	$0.417{\pm}0.037$
Precision (negative)	$0.992 {\pm} 0.002$	$0.989{\pm}0.003$
Recall (positive)	$0.869 {\pm} 0.036$	$0.832{\pm}0.042$
Recall (negative)	0.947 ± 0.007	$0.929{\pm}0.008$
f1 (positive)	$0.634{\pm}0.033$	$0.554{\pm}0.033$
f1 (negative)	0.969 ± 0.003	$0.958{\pm}0.004$
HSS_1	-0.008 ± 0.142	-0.348 ± 0.183
HSS_2	0.606 ± 0.035	$0.517{\pm}0.035$
Gilbert skill score	$0.436{\pm}0.036$	$0.350{\pm}0.032$
TSS	0.817 ± 0.034	0.761 ± 0.039

日本における新プロジェクト

宇宙風は、太陽フレアと呼

予報拠点はいずれも予報を外した。こうした失敗を妨ごうと、個別に活動している国内の

関係機関に連携を呼び掛け、精度の高いシステムの構築を目指す。(社会部・今村太郎

されて地球に到達し、通信機器などに障害が出る「宇宙廉(磁気展)」の予報を強化する

名古屋大太陽地球璵嬪研究所(名古屋市干種区)は、

ためのネットワークづくりに乗り出す。三月中旬に宇宙魔が発生したが、世界五カ所の

「宇宙嵐」的中へ

とかりき起こす。 クス線や高エネルギ はれる爆発で放出されるエッ

八九年にはカナダ・ケベック動しなくなったりする。一九

算要求を始めた。今月二十 日に研究者や予報担当者を たが、名大太陽地球環境研 旗板り役となって政府

できるシステムの開発を日力すれば宇宙風の規模を予 果めた会合を名大で開き、 元所は高精度の予報システ の予報失敗の改善点を洗 市民生活に影響はなか

オーロラが観測されるなど 事後検証の結果、最高レベ 段階ある子報レベルで最も 気の乱れは大きかったが、 の「やや活発」にとどまった。 「強烈な活動」が予報され (米中部) や一番

文部科学省新学術領域研究

「太陽地球圏環境予測:

我々が生きる宇宙の理解と その変動に対応する社会基盤の形成 2015年7月14日朝刊

較的低い緯度でオーロラが 場が大きく乱れる現象。比 場が大きく乱れる現象。比 はなが、まない。 はない。 はな。 はない。 はない。 はない。 はない。 はない。 はない。 はない。 はない。 はない。 はない。

発生する原因にもなる。

9年度までの公開を目指 は世界初の試みで、20 ムが着手する。マップ作り や京都大、情報通信研究機 模で起きる被害のハザード る高精度の手法と、地球規 **透電線に許容量を超える電** 構などのプロジェクトチー 強い磁気崩が起きると、 磁気庫屋の発生を予測す 名古屋大

「ハザードマップ」作成へ

GPS障害 ■ 大規模停電

ケベック州で9時間にわた アム(GPS)などに重大 肌空無線、全地球測位シス は通信障害が出たりする。

現象が起きた。 現代で同規

48 などの DC

> 时間前に予報する体制も整 血の規模や発生時間を、

ップを作ることを決めた。 れやすいなど、 人規模な停電を防ぐ対策 做害予想を磁気艦の規模に

備が壊れたり、 短波通信や

年に観測され、オーロラが

巨大な磁気嵐は1859

」と話している。 大規模な災害に備えた

亦道付近で見られるなどの

☆ハザードマップに図示される
磁気道の主な災害

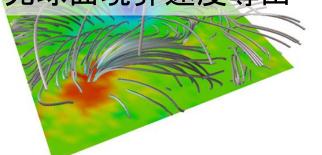
野完也・名大教授は「磁気

チームの代表を務める意

流が流れて変電所などの設

るなどの予防策を実施でき 航空機の航路を変更す

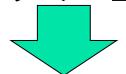
る可能性があるという。


シミュレーションによる2つの戦略

戦略① Data-driven Simulation

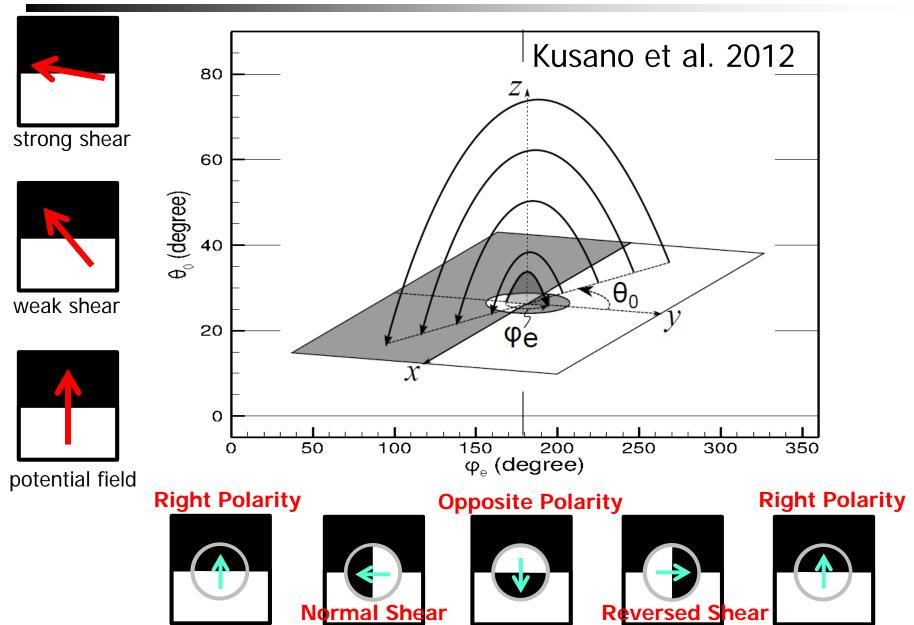
初期境界条件パラメタ

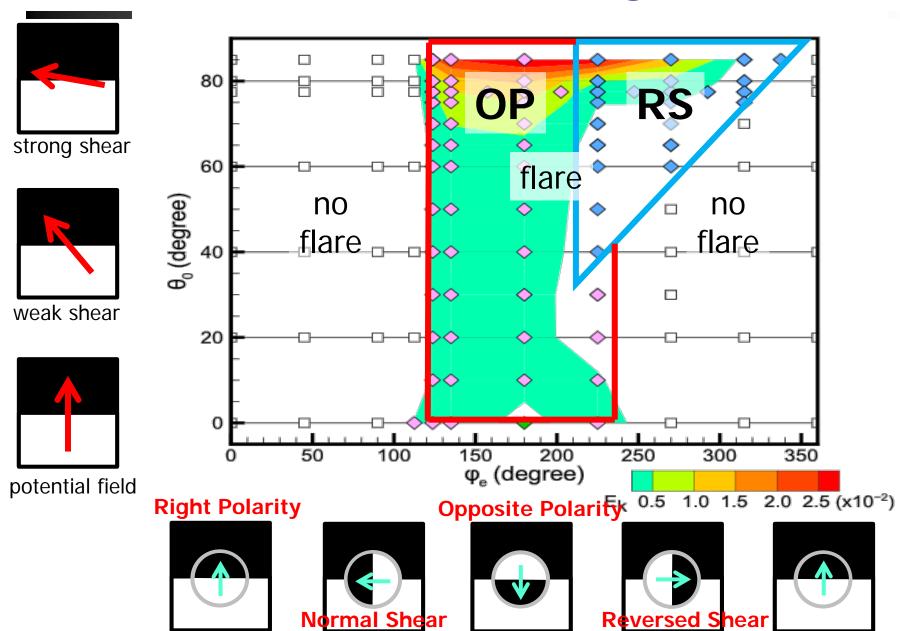
非線型フォースフリー場モデル 光球面境界速度導出

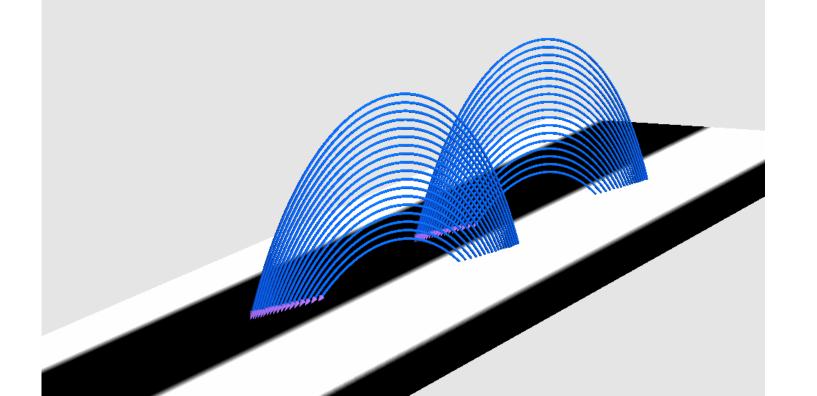


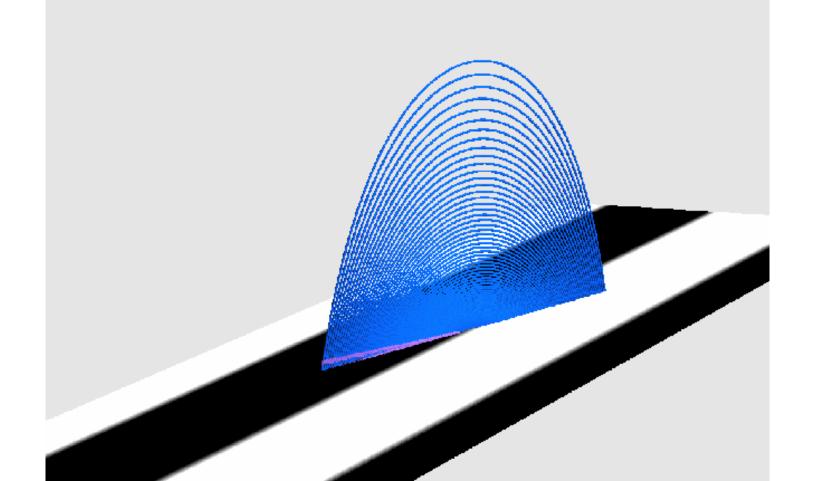
戦略② Ensemble Simulation

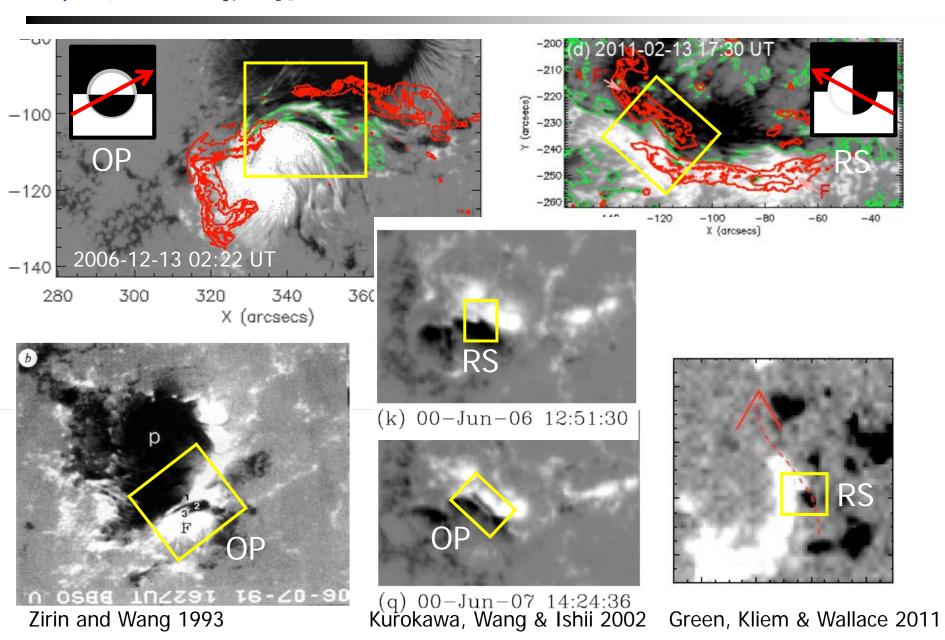
様々な初期境界条件・パラメタ

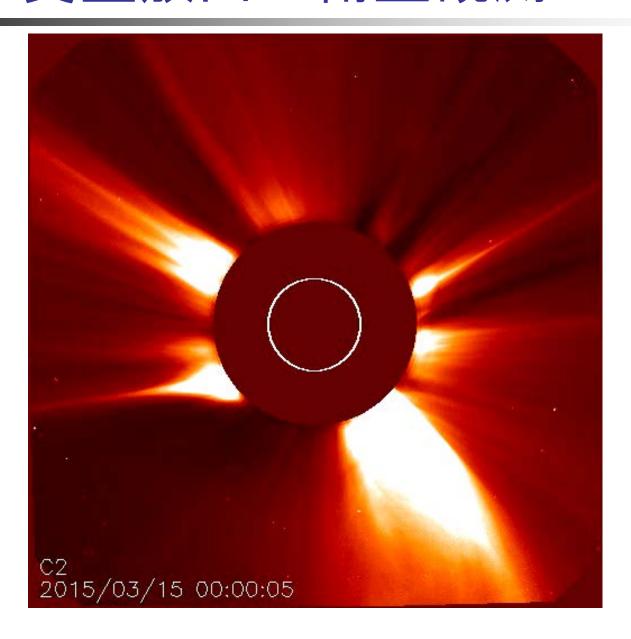

適切なパラメター空間の抽出


観測による検証

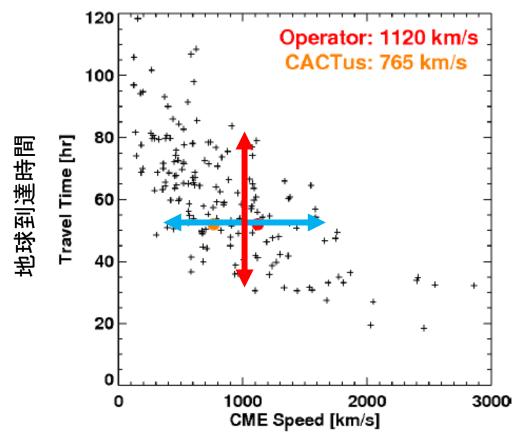

Parameter Space: θ_0 vs. ϕ_e


Flare Phase Diagram


反極性型(OP-type)


逆磁場型(RS-type)

観測的検証



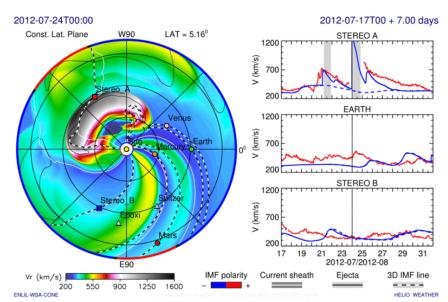
コロナ質量放出の衛星観測

CMEの初速度と地球到達時間

■ CMEの地球到達時間の経験予測は±20時間の 誤差を伴う。

コロナグラフから得られたCME速度の推定値

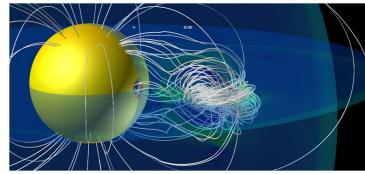
CMEモデルの現状と課題

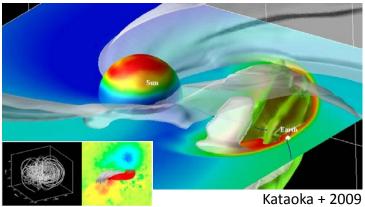

現状

• WSA - ENLIL + Cone model (速度パルス) @SWPC/NOAA

課題

- CMEに磁場が入っていない
- 太陽近傍を解いていない
- フレア・フィラメント放出との関係


WSA - ENLIL + Cone model


http://www.swpc.noaa.gov/products/wsa-enlil-solar-wind-prediction

目標

- SUSANOO太陽風に磁束管込み CMEを入射するモデル開発中
- CME磁束管をコロナの観測から 決める経験モデルの構築

Shiota + 2010

現状と展望

- フレアの基本メカニズムは解かれつつあるが、発現時間と規模の正確な予測は開発途上
 - 様々な経験的フレア予測が試されているが、いずれも成功率(Xクラス、1日予測) は0.5程度
 - ベクトル磁場に基づく最適パラメターの探索が始まりつつある。
- 複数の研究戦略を共に進める必要
 - 数値経験予測
 - ビッグデータ解析から予測最適パラメターを探る
 - アンサンブル・シミュレーション
 - 数値シミュレーションによるパラメタ空間の探索
 - データ駆動型シミュレーション予測
 - 同化手法の開発:3次元コロナ磁場(彩層磁場、 フィラメント磁場の観測)、光球面運動(速度測定)

いずれも、今後5 年間で急速な成 長を期待できる。

- -計算機
- •アルゴリズム
- 観測 サイクル24極大期

新学術領域研究 プロジェクトへの期待