MICT 宇宙天気ユーザーズフォーラム 2015年7月17日(金)

太陽嵐の予測について

草野 完也

名古屋大学太陽地球環境研究所

フレア コロナ質量放出:CME フィラメント放出

太陽面爆発現象

太陽放射(VIS, UV, EUV, X)

太陽風(高温プラズマの高速流)

高エネルギー粒子

惑星間空間

電離圏嵐

磁気嵐

宇宙放射線

地球

太陽地球圏環境変動の社会影響

宇宙放射線による宇宙飛行士・航空機乗員の被曝|電離圏擾乱による測位・通信障害

ようこうによる太陽コロナX線像

太陽フレアは磁気エネルギーの解放現象

フレアに伴って発生するプラズマ放出現象

太陽風とコロナ質量放出(CME)

何を予測するか

1. 爆発の発生予測

太陽

 2. 地球軌道上におけるその影響の予測 (惑星間空間の伝搬の予測)

太陽風(高温プラズマの高速流)

電離圏嵐

磁気嵐

宇宙放射線

地球

7月9日の太陽

SDO HMI Magnetogram 9-Jul-2015 10:58:24.900

③磁力線のつなぎ替え(リコネクション)

④プラズマと磁場の噴出

2006年12月13日の太陽フレア爆発

光球面

ひので可視光 望遠鏡の観測

激甚宇宙天気災害の可能性

■ 超キャリントン・クラス

- 樹木年輪中の炭素同位体解析 西暦774~775年及び、西暦992~993年にキャリントン・イベントの10倍程度の放射線急増事象が発生したことを発見 (名大: Miyake et al. 2012 Nature, Miyake et al. 2013 Nature Comm.)
- 太陽型恒星の超巨大フレアの可能性(京大: Maehara et al. 2012 Nature)

■ キャリントン・クラス

記録された最大の磁気嵐

■ 1859年9月 Dst~-1760nT (キャリントン・イベント) 現代において発生すれば、衛星障害、通信・測位障害など全地球的な 激甚宇宙天気災害を引き起こす。(米国NRC:被害総額~2兆ドルと試算)

2012年7月 推定Dst~-1182nT(地球に到達した場合の推定) 太陽の裏面で発生したため地球には到達しなかったが、もし2週間前に発 生した場合、地球に到達し、大規模被害をもたらしたと考えられる。 (Baker et al. 2013)

■ サブ・キャリントン・クラス

- 1989年3月 Dst= -589nT ケベック州大停電
- 2000年7月 Dst=-301nT X線観測衛星「あすか」制御不良
- 2003年10月 Dst= -422nT スウェーデン、南アフリカで送電
 システム障害、火星探査機Mars Odyssey障害

(nT)

Dst

-**20**00

-1000

Dst:地球磁気圏に流れる 軸対称な環電流の強さを

表す地磁気活動度指数

超高速CME(2012年7月23日)

Baker et al. 2013 Defining Extreme Space Weather Scenarios

2015/7/17

黒点形態分類によるフレア確率

McIntosh classification

Fig. 1. The 3-component McIntosh classification, with examples of each category.

McIntosh 1990

Figure 4. Derived 24-hour active-region flare probabilities for each of the three McIntosh classification parameters using Poisson statistics.

Parameter 3: Sunspot Distribution

米国NOAAのフレア予測結果

Crown 2012 "Validation of NOAA/SWPC Flare Probabilities for Cycle 23"

Contingency Table for X-class Flares Prediction with the lead time of one-day

Forecast	Observatio positive	on Observation negative	hit rate
Yes	50 (a)	67 (b)	a/(a+b) ~0.43
No	52 (c)	31315 (d)	
	a/(a+c)	Skill Score = (a-b)/(a	+c) ~ -0.17
	~0.49 precision	True Skill Score (TSS) = a/(a+b) - c/(a) C+d) ~ 0.43

新たな予測への取り組み

ベクトル磁場データの利用

- Bobra and Couvidat 2014
- SDO衛星の活動領域ベクトル磁場データセット(SHARP)より様 々な磁場パラメータを求め、機械学習アルゴリズム Support Vector Machine (SVM)を用いてM及びXクラスフレアの予測性 能を評価

Keyword	Description	Formula	F-Score	Selection
TOTUSJH	Total unsigned current helicity	$H_{c_{total}} \propto \sum B_z \cdot J_z $	3560	Included
TOTBSQ	Total magnitude of Lorentz force	$F \propto \sum B^2$	3051	Included
TOTPOT	Total photospheric magnetic free energy density	$ \rho_{tot} \propto \sum \left(\vec{B}^{\text{Obs}} - \vec{B}^{\text{Pot}} \right)^2 dA $	2996	Included
TOTUSJZ	Total unsigned vertical current	$J_{z_{total}} = \sum J_z dA$	2733	Included
ABSNJZH	Absolute value of the net current helicity	$H_{c_{abs}} \propto \sum_{p+} B_z \cdot J_z $	2618	Included
SAVNCPP	Sum of the modulus of the net current per polarity	$J_{z_{sum}} \propto \left \sum_{z} J_z dA \right + \left \sum_{z} J_z dA \right $	2448	Included
USFLUX	Total unsigned flux	$\Phi = \sum B_z dA$	2437	Included
AREA_ACR	Area of strong field pixels in the active region	Area = \sum Pixels	2047	Included
TOTFZ	Sum of z-component of Lorentz force	$F_z \propto \sum (B_x^2 + B_y^2 - B_z^2) dA$	1371	Included
MEANPOT	Mean photospheric magnetic free energy	$ar{ ho} \propto rac{1}{N} \sum \left(ec{m{B}}^{ m Obs} - ec{m{B}}^{ m Pot} ight)^2$	1064	Included
R_VALUE	Sum of flux near polarity inversion line	$\Phi = \sum B_{LoS} dA$ within R mask	1057	Included
EPSZ	Sum of z-component of normalized Lorentz force	$\delta F_z \propto \frac{\sum (B_x^2 + B_y^2 - B_z^2)}{\sum B^2}$	864.1	Included
shrgt45	Fraction of Area with Shear $>45^{\circ}$	Area with Shear $>45^\circ$ / Total Area	740.8	Included
MEANSHR	Mean shear angle	$\overline{\Gamma} = rac{1}{N} \sum rccos \left(rac{oldsymbol{B}^{ m Obs} . oldsymbol{B}^{ m Pot}}{ B^{ m Obs} B^{ m Pot} } ight)$	727.9	Discarded
MEANGAM	Mean angle of field from radial	$\gamma = \frac{1}{N} \sum \arctan\left(\frac{B_h}{B_z}\right)$	573.3	Discarded
MEANGBT	Mean gradient of total field	$\overline{ abla B_{ ext{tot}} } = \frac{1}{N} \sum \sqrt{\left(\frac{\partial B}{\partial x}\right)^2 + \left(\frac{\partial B}{\partial y}\right)^2}$	192.3	Discarded
MEANGBZ	Mean gradient of vertical field	$\overline{ \nabla B_z } = \frac{1}{N} \sum \sqrt{\left(\frac{\partial B_z}{\partial x}\right)^2 + \left(\frac{\partial B_z}{\partial y}\right)^2}$	88.40	Discarded
MEANGBH	Mean gradient of horizontal field	$\overline{ \nabla B_h } = \frac{1}{N} \sum \sqrt{\left(\frac{\partial B_h}{\partial x}\right)^2 + \left(\frac{\partial B_h}{\partial y}\right)^2}$	79.40	Discarded
MEANJZH	Mean current helicity (B_z contribution)	$\overline{H_c} \propto \frac{1}{N} \sum B_z \cdot J_z$	46.73	Discarded
TOTFY	Sum of y-component of Lorentz force	$F_y \propto \sum B_y B_z dA$	28.92	Discarded
MEANJZD	Mean vertical current density	$\overline{J_z} \propto \frac{1}{N} \sum \left(\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} \right)$	17.44	Discarded
MEANALP	Mean characteristic twist parameter, α	$\alpha_{total} \propto \frac{\sum J_z \cdot B_z}{\sum B_z^2}$	10.41	Discarded
TOTFX	Sum of x-component of Lorentz force	$F_x \propto -\sum B_x B_z dA$	6.147	Discarded
EPSY	Sum of y-component of normalized Lorentz force	$\delta F_y \propto \frac{-\sum B_y B_z}{\sum B^2}$	0.647	Discarded
EPSX	Sum of x-component of normalized Lorentz force	$\delta F_x \propto \frac{\sum B_x B_z}{\sum B^2}$	0.366	Discarded

Table 1. SHARP active region parameter formulae.

Metric	Segmented	Operational
Time interval (no flare)	48h	24h
class-imbalance ratio	16.5	16.5
Accuracy	$0.943 {\pm} 0.006$	$0.924{\pm}0.007$
Precision (positive)	$0.501 {\pm} 0.041$	$0.417 {\pm} 0.037$
Precision (negative)	$0.992{\pm}0.002$	$0.989{\pm}0.003$
Recall (positive)	$0.869 {\pm} 0.036$	$0.832{\pm}0.042$
Recall (negative)	$0.947 {\pm} 0.007$	$0.929{\pm}0.008$
f1 (positive)	$0.634 {\pm} 0.033$	$0.554{\pm}0.033$
f1 (negative)	$0.969 {\pm} 0.003$	$0.958 {\pm} 0.004$
HSS_1	-0.008 ± 0.142	-0.348 ± 0.183
HSS_2	$0.606 {\pm} 0.035$	$0.517 {\pm} 0.035$
Gilbert skill score	$0.436 {\pm} 0.036$	$0.350 {\pm} 0.032$
TSS	0.817 ± 0.034	0.761 ± 0.039

日本における新プロジェクト

シミュレーションによる2つの戦略

Parameter Space: θ_0 vs. ϕ_e

Flare Phase Diagram

反極性型(OP-type)

観測的検証

Zirin and Wang 1993

(q) 00–Jun–07 14:24:36 Kurokawa, Wang & Ishii 2002

Green, Kliem & Wallace 2011

コロナ質量放出の衛星観測

CMEの初速度と地球到達時間

 CMEの地球到達時間の経験予測は±20時間の 誤差を伴う。

CMEモデルの現状と課題

現状

• WSA - ENLIL + Cone model (速度パルス) @SWPC/NOAA

課題

- CMEに磁場が入っていない
- 太陽近傍を解いていない
- フレア・フィラメント放出との関係

WSA - ENLIL + Cone model

http://www.swpc.noaa.gov/products/wsa-enlil-solar-wind-prediction

目標

- SUSANOO太陽風に磁束管込み
 CMEを入射するモデル開発中
- CME磁束管をコロナの観測から
 決める経験モデルの構築

Shiota + 2010

現状と展望

- フレアの基本メカニズムは解かれつつあるが、発現時間と規模の正確な予測は開発途上
 - 様々な経験的フレア予測が試されているが、いずれも成功率(Xクラス、1日予測) は0.5程度
 - ベクトル磁場に基づく最適パラメターの探索が始まりつつある。
- 複数の研究戦略を共に進める必要
 - 数值経験予測
 - ビッグデータ解析から予測最適パラメターを探る
 - アンサンブル・シミュレーション
 - 数値シミュレーションによるパラメタ空間の探索
 - データ駆動型シミュレーション予測
 - 同化手法の開発:3次元コロナ磁場(彩層磁場、 フィラメント磁場の観測)、光球面運動(速度測定)

2015/7/17